How do you find the value of a if the infinite geometric series a+ a^2 + 2^3 + ...... =4a, a cannot equal to 0?
1 Answer
Nov 27, 2015
Assuming the
(1-a)4a = (1-a)(sum_(n=1)^oo a^n) = a
Hence
Explanation:
(1-a)(sum_(n=1)^N a^n)
=sum_(n=1)^N a^n - a sum_(n=1)^N a^n
=a+color(red)(cancel(color(black)(sum_(n=2)^N a^n)))-color(red)(cancel(color(black)(sum_(n=2)^N a^n)))-a^(N+1)
=a-a^(N+1)
If
(1-a)(sum_(n=1)^oo a^n) = lim_(N->oo) (a-a^(N+1)) = a
(If
So:
(1-a)4a = (1-a)(sum_(n=1)^oo a^n) = a
We are told that
4(1-a) = 1
So:
So: