The formula for calculating the distance between two points is:
d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)
Substituting the values from the points and for the distance in the problem gives:
5 = sqrt((color(red)(5) - color(blue)(a))^2 + (color(red)(-1) - color(blue)(3))^2)
We can now solve for a:
Squaring both sides of the equation gives:
5^2 = (sqrt((color(red)(5) - color(blue)(a))^2 + (color(red)(-1) - color(blue)(3))^2))^2
25 = (color(red)(5) - color(blue)(a))^2 + (color(red)(-1) - color(blue)(3))^2
25 = (color(red)(5) - color(blue)(a))^2 + (-4)^2
25 = (color(red)(5) - color(blue)(a))^2 + 16
25 = 25 - 10a + a^2 + 16
-color(red)(25) + 25 = -color(red)(25) + 25 - 10a + a^2 + 16
0 = 0 - 10a + a^2 + 16
0 = -10a + a^2 + 16
0 = a^2 - 10a + 16
0 = (a - 8)(a - 2)
(a - 8)(a - 2) = 0
Now, solve each term for 0:
Solution 1)
a - 8 = 0
a - 8 + color(red)(8) = 0 + color(red)(8)
a - 0 = 8
a = 8
Solution 2)
a - 2 = 0
a - 2 + color(red)(2) = 0 + color(red)(2)
a - 0 = 2
a = 2
The solution is: a can be either 8 or 2