How do you find the value of a given the points (8,-5), (a,4) with a distance of sqrt85?

1 Answer
Nov 14, 2017

See a solution process below:

Explanation:

The formula for calculating the distance between two points is:

d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)

Substituting the values from the points in the problem and solveing for a gives:

sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + (color(red)(4) - color(blue)(-5))^2)

sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + (color(red)(4) + color(blue)(5))^2)

sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + 9^2)

sqrt(85) = sqrt((color(red)(a) - color(blue)(8))^2 + 81)

(sqrt(85))^2 = (sqrt((color(red)(a) - color(blue)(8))^2 + 81))^2

85 = (color(red)(a) - color(blue)(8))^2 + 81

85 = a^2 - 16a + 64 + 81

85 - color(red)(85) = a^2 - 16a + 64 + 81 - color(red)(85)

0 = a^2 - 16a + 60

a^2 - 16a + 60 = 0

(a - 10)(a - 6) = 0

Solution 1:

a - 10 = 0

a - 10 + color(red)(10) = 0 + color(red)(10)

a - 0 = 10

a = 10

Solution 2:

a - 6 = 0

a - 6 + color(red)(6) = 0 + color(red)(6)

a - 0 = 6

a = 6

a can be either 6 or 10