How do you find the value of a given the points (2,-5), (a,7) with a distance of 15?

1 Answer
Jun 11, 2017

See a solution process below:

Explanation:

The formula for calculating the distance between two points is:

d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)

Substituting the values from the problem for the points and the distance and then solving for a gives:

15 = sqrt((color(red)(a) - color(blue)(2))^2 + (color(red)(7) - color(blue)(-5))^2)

15 = sqrt((color(red)(a) - color(blue)(2))^2 + (color(red)(7) + color(blue)(5))^2)

15 = sqrt((color(red)(a) - color(blue)(2))^2 + 12^2)

15 = sqrt((color(red)(a) - color(blue)(2))^2 + 144)

15^2 = (sqrt((color(red)(a) - color(blue)(2))^2 + 144))^2

225 = (color(red)(a) - color(blue)(2))^2 + 144

225 = a^2 - 4a + 4 + 144

225 = a^2 - 4a + 148

225 - color(red)(225) = a^2 - 4a + 148 - color(red)(225)

0 = a^2 - 4a - 77

0 = (a - 11)(a + 7)

Solution 1)

a - 11 = 0

a - 11 + color(11) = 0 + color(11)

a - 0 = 11

a = 11

Solution 1)

a + 7 = 0

a + 7 - color(7) = 0 - color(7)

a + 0 = -7

a = -7

a can be either -7 or 11