We know that ,
"(1)The nth term of a geometric series is :"
color(blue)(a_n=a_1(r)^(n-1), where, a_1=1^(st)term and r=common ratio
"(2) The sum of first n term of the geometric series is :"
color(red)(S_n=(a_1(1-r^n))/(1-r) ,where, r!=1
Here, a_1=48 ,a_n=3 and r=(-1/2)
Using (1) we get
a_n=48(-1/2)^(n-1)=3
=>(-1/2)^(n-1)=3/48=1/16
=>(-1/2)^(n-1)=(-1/2)^4
=>n-1=4
=>n=5
Now ,using (2) "we get, "color(violet)"sum of first five terms is :"
S_5=(48[1-(-1/2)^5])/(1-(-1/2)
=>S_5=(48[1-(-1/32)])/(1+1/2)
=>S_5=(48[1+1/32])/(3/2)
=>S_5=(96(33/32))/3
=>S_5=33
.....................................................................
Note:
The sum of first n term of this series is :
S_n=(48[1-(-1/2)^n])/(1-(-1/2)
S_n=(48[1-(-1/2)^n])/(3/2)
S_n=2/3xx48[1-(-1/2)^n]
S_n=32[1-(-1/2)^n]