We know that ,
#"(1)The nth term of a geometric series is :"#
#color(blue)(a_n=a_1(r)^(n-1), where, a_1=1^(st)term and r=common # # ratio#
#"(2) The sum of first n term of the geometric series is :"#
#color(red)(S_n=(a_1(1-r^n))/(1-r) ,where, r!=1#
Here, #a_1=48 ,a_n=3 and r=(-1/2)#
Using #(1)# we get
#a_n=48(-1/2)^(n-1)=3#
#=>(-1/2)^(n-1)=3/48=1/16#
#=>(-1/2)^(n-1)=(-1/2)^4#
#=>n-1=4#
#=>n=5#
Now ,using #(2)# #"we get, "color(violet)"sum of first five terms is :"#
#S_5=(48[1-(-1/2)^5])/(1-(-1/2)#
#=>S_5=(48[1-(-1/32)])/(1+1/2)#
#=>S_5=(48[1+1/32])/(3/2)#
#=>S_5=(96(33/32))/3#
#=>S_5=33#
.....................................................................
Note:
The sum of first n term of this series is :
#S_n=(48[1-(-1/2)^n])/(1-(-1/2)#
#S_n=(48[1-(-1/2)^n])/(3/2)#
#S_n=2/3xx48[1-(-1/2)^n]#
#S_n=32[1-(-1/2)^n]#