How do you find the solution to sintheta+3=5sinthetasinθ+3=5sinθ if 0<=theta<2pi0≤θ<2π?
1 Answer
Jul 14, 2017
Explanation:
We want to solve:
sin theta + 3 = 5sin theta sinθ+3=5sinθ wheretheta in [0,2pi)θ∈[0,2π)
We can write this as:
\ \ 4sin theta = 3
:. sin theta = 3/4
If we consider the graph of
![]()
sin theta = 3/4 =>
" " theta_1 = arcsin(3/4) (the fundamental value)
" " \ \ \ = 0.848^r (3dp)
So the two solutions in the specified range are:
theta = theta_1, pi-theta_1
\ \ = 0.848^r, 2.294^r