How do you find the roots, real and imaginary, of y=-(x - 6)^2-x^2+x + 3 using the quadratic formula?

1 Answer
Nov 9, 2017

Expand the brackets and use the Formula

x=1/4(13+sqrt95i) or x=1/4(13-sqrt95i)

Explanation:

Firstly, expand the brackets and collect like terms.

y=-(x^2-12x+36)-x^2+x+3
y=-x^2+12x-36-x^2+x+3
y=-2x^2+13x-33

Now we sub into the quadratic formula a=-2, b=13, c=-33

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-13+-sqrt(13^2-4(-2)(-33)))/(2(-2)

x=(-13+-sqrt(169-264))/(-4)

x=(13+-sqrt(-95))/4

Ok, we can see here our roots will be imaginary, but that's ok.

x=(13+-sqrt(95)i)/(4)

x=1/4(13+sqrt95i) or x=1/4(13-sqrt95i)