How do you find the roots, real and imaginary, of y= -x^2 -x+3-(x- 3 )^2 using the quadratic formula?

1 Answer
Apr 18, 2017

Roots are (5+isqrt71)4 and (5-isqrt71)4

Explanation:

y=-x^2-x-3-(x-3)^2

= -x^2-x-3-(x^2-6x+9)

= -x^2-x-3-x^2+6x-9

= -2x^2+5x-12

Using quadratic formula, the roots are (-5+-sqrt(5^2-4×(-2)×(-12)))/(2×(-2)

= (-5+-sqrt(25-96))/(-4)

= (5+-sqrt(-71))/4

i.e. roots are (5+isqrt71)4 and (5-isqrt71)4