How do you find the roots, real and imaginary, of y=x^2 - (x-2)(2x-1) using the quadratic formula?

2 Answers

x=frac{5\pm\sqrt17}{2}

Explanation:

Given quadratic function:

y=x^2-(x-2)(2x-1)

y=x^2-2x^2+5x-2

y=-x^2+5x-2

The roots of given function will be at y=0 i.e.

-x^2+5x-2=0

x^2-5x+2=0

Now, using quadratic formula, the roots of above quadratic equation are given as

x_{1, 2}=\frac{-(-5)\pm\sqrt{(-5)^2-4(1)(2)}}{2(1)}

=\frac{5\pm\sqrt17}{2}

Thus, the roots of given quadratic function are real & distinct given as

x=frac{5\pm\sqrt17}{2}

Jul 24, 2018

The solutions are S={0.44, 4.56}

Explanation:

The quadratic equation is

y=x^2-(x-2)(2x-1)

=x^2-(2x^2-5x+2)

=x^2-2x^2+5x-2

=>, -x^2+5x-2=0

a=-1

b=5

c=-2

The discriminant is

Delta=b^2-4ac=(5)^2-4(-1)(-2)=25-8=17

As Delta>0, there are 2 real roots

The solution is

x=(-b+-sqrtDelta)/(2a)

=(-5+-sqrt17)/(-2)

x_1=0.438

x_2=4.56

graph{-x^2+5x-2 [-10, 10, -5, 5]}