How do you find the roots, real and imaginary, of y= x^2 - 8x + (x+4)^2 using the quadratic formula?

1 Answer
May 12, 2018

color(maroon)("two roots are " +2sqrt2 i, -2sqrt2 i

Explanation:

y = x^2 - 8x + (x + 4)^2

y = x^2 - 8x + x^2 + 8x + 16

y = 2x^2 + 16

x = (-b +- sqrt(b^2 - 4ac)) / (2a)

a = 2, b = 0, c = 16

x = (0 +- sqrt(0 - 128)) / 4

x = +- 8sqrt(-2) / 4 = +- 2 sqrt(-2)

color(maroon)(x = + 2sqrt2 i, -2sqrt2 i