How do you find the roots, real and imaginary, of y= x^2 - 8x -9- (2x-1)^2 using the quadratic formula?

1 Answer
Dec 22, 2017

see below

Explanation:

x^2−8x−9−(2x−1)^2

=>x^2−8x−9−(4x^2-2x+1)

=>x^2−8x−9−4x^2+2x-1)

=>-3x^2−6x−10

=>3x^2+6x+10

D=b^2-4acquad=>quad36-4*3*10
D<0=36-120=-84

x_(1,2)=(-b+-sqrtD)/(2a)=(-6+-sqrt(7*3*2*2*i^2))/(6)

x_(1,2)=(-6+-2isqrt(7*3))/(6)=(cancel2(-3+-isqrt(21)))/(cancel2*3)

x_(1)=(-3-isqrt(21))/(3)=-1-(isqrt(21))/3

x_(2)=(-3+isqrt(21))/(3)=-1+(isqrt(21))/3