How do you find the roots, real and imaginary, of y= x^2 - 6x - (6x+1)^2 using the quadratic formula?

1 Answer
Feb 22, 2017

We have real zeros 8/35+sqrt46/35 and 8/35-sqrt46/35

Explanation:

The roots of a quadratic function y=f(x)=ax^2+bx+c=0 are given by (-b+-sqrt(b^2-4ac))/(2a)

Here we have y=f(x)=x^2-6x-(6x+1)^2

= x^2-6x-(36x^2+12x+1)

= x^2-6x-36x^2-12x-1

= -35x^2-18x-1

Hence its zeros are (-(-18)+-sqrt((-18)^2-4xx(-35)xx(-1)))/(2xx(-35))

= (18+-sqrt(324-140))/(-70)

= (18+-sqrt184)/(-70)

= (18+-2sqrt46)/(-70)

i.e 8/35+-sqrt46/35

i.e. 8/35+sqrt46/35 and 8/35-sqrt46/35