How do you find the roots, real and imaginary, of y= x^2 - 6x +3 -(2x- 3 )^2 using the quadratic formula?

y= x^2 - 6x +3 -(2x- 3 )^2 =0

1 Answer
Jul 27, 2018

=>D=-36 < 0=>the roots are imaginary numbers.

Explanation:

Here,

y=x^2-6x+3-(2x-3)^2

y=x^2-6x+3-(4x^2-12x+9)

=>y=x^2-6x+3-4x^2+12x-9

=>y=-3x^2+6x-6

If y=0 ,then -3x^2+6x-6=0" is a quadratic equation ."

Comparing with ax^2+bx+c=0 ,we get

a=-3 ,b=6 and c=-6

So, "the "color(blue)"Discriminant" of the quadratic eqn. is :

color(blue)(D=b^2-4ac)=6^2-4(-3)(-6)=36-72

=>D=-36 < 0=>the roots are imaginary numbers.

i.e. x in CCto complex roots.