How do you find the roots, real and imaginary, of y=-x^2+5x-(x-3)^2 using the quadratic formula?

1 Answer
Apr 25, 2018

x=1or4.5

Explanation:

First, we expand -(x-3)^2 to get -(x^2-6x+9)=-x^2+6x-9

y=-x^2+5x-x^2+6x-9=-2x^2+11x-9

x=(-11+-sqrt(11^2-4(-2*-9)))/(2*-2)

x=-(-11+-sqrt(121-4(18)))/4

x=-(-11+-sqrt(49))/4

x=-(-11+7)/4or-(-11-7)/4

x=4/4or18/4

x=1or4.5

Graph:
graph{-x^2+5x-(x-3)^2 [-2.045, 7.955, -0.68, 4.32]}