How do you find the roots, real and imaginary, of y= x^2 - 5x + 6 - (2x-1)^2 using the quadratic formula?

1 Answer
Jun 9, 2018

color(crimson)(x = -((1 + sqrt61) / 6), -((1 - sqrt61) / 6)

Explanation:

y = x^2 - 5x + 6 - 4x^2 + 4x - 1

y = -3x^2 -x + 5

a = -3, b = -1, c = 5

x = (-b +- sqrt(b^2 - 4ac)) / (2a) " is the quadratic formula"

:. x = (1 +- sqrt(1 + 60)) / -6

color(crimson)(x = -((1 + sqrt61) / 6), -((1 - sqrt61) / 6)