How do you find the roots, real and imaginary, of y= x^2 + 4x - 3 using the quadratic formula?
1 Answer
Feb 29, 2016
See explanation...
Explanation:
This has zeros given by the quadratic formula:
x = (-b+-sqrt(b^2-4ac))/(2a)
=(-4+-sqrt((-4)^2-(4*1*(-3))))/(2*1)
=(-4+-sqrt(16+12))/2
=(-4+-sqrt(28))/2
=(-4+-sqrt(2^2*7))/2
=(-4+-2sqrt(7))/2
=-2+-sqrt(7)
Alternative Method
The difference of squares identity can be written:
a^2-b^2=(a-b)(a+b)
Complete the square and use this with
x^2+4x-3
=x^2+4x+4-7
=(x+2)^2-(sqrt(7))^2
=((x+2)-sqrt(7))((x+2)+sqrt(7))
=(x+2-sqrt(7))(x+2+sqrt(7))
Hence zeros: