How do you find the roots, real and imaginary, of y= x^2 + 4x - 3 using the quadratic formula?

1 Answer
Feb 29, 2016

See explanation...

Explanation:

x^2+4x-3 is of the form ax^2+bx+c with a=1, b=4 and c=-3.

This has zeros given by the quadratic formula:

x = (-b+-sqrt(b^2-4ac))/(2a)

=(-4+-sqrt((-4)^2-(4*1*(-3))))/(2*1)

=(-4+-sqrt(16+12))/2

=(-4+-sqrt(28))/2

=(-4+-sqrt(2^2*7))/2

=(-4+-2sqrt(7))/2

=-2+-sqrt(7)

Alternative Method

The difference of squares identity can be written:

a^2-b^2=(a-b)(a+b)

Complete the square and use this with a=x+2 and b=sqrt(7) as follows:

x^2+4x-3

=x^2+4x+4-7

=(x+2)^2-(sqrt(7))^2

=((x+2)-sqrt(7))((x+2)+sqrt(7))

=(x+2-sqrt(7))(x+2+sqrt(7))

Hence zeros: x=-2+-sqrt(7)