How do you find the roots, real and imaginary, of y= x^2 - 3x - (2x+4)^2 using the quadratic formula?

1 Answer
Mar 16, 2016

real roots: x=-16/3,-1
imaginary roots: none

Explanation:

1 Start by converting the equation into standard form.

y=x^2-3x-(2x+4)^2

y=x^2-3x-(color(crimson)(2x) color(blue)(+4))(color(orange)(2x) color(teal)(+4))

y=x^2-3x-(color(crimson)(2x)(color(orange)(2x)) color(crimson)(+2x)(color(teal)4) color(blue)(+4)(color(orange)(2x)) color(blue)(+4)(color(teal)4))

y=x^2-3x-(4x^2+8x+8x+16)

y=x^2-3x-(4x^2+16x+16)

y=x^2-4x^2-3x-16x-16

y=color(brown)(-3)x^2 color(turquoise)(-19)x color(violet)(-16)

2. Identify the color(brown)a,color(turquoise)b, and color(violet)c values of the quadratic equation. Then plug the values into the quadratic formula to solve for the roots.

color(brown)(a=-3)color(white)(XXXXX)color(turquoise)(b=-19)color(white)(XXXXX)color(violet)(c=-16)

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(-(color(turquoise)(-19))+-sqrt((color(turquoise)(-19))^2-4(color(brown)(-3))(color(violet)(-16))))/(2(color(brown)(-3)))

x=(19+-sqrt(361-192))/-6

x=(19+-sqrt(169))/-6

x=(19+-13)/-6

x=(19+13)/-6color(white)(X),color(white)(X)(19-13)/-6

x=32/-6color(white)(X),color(white)(X)6/-6

color(green)(|bar(ul(color(white)(a/a)x=-16/3color(white)(i),-1color(white)(a/a)|)))

:., the real roots are x=-16/3 or x=-1.