How do you find the roots, real and imaginary, of y= x^2 -21x +(x+1)^2 y=x221x+(x+1)2 using the quadratic formula?

1 Answer
Aug 10, 2017

x = frac(19 pm sqrt(353))(4)x=19±3534

Explanation:

We have: y = x^(2) - 21 x + (x + 1)^(2)y=x221x+(x+1)2

First, let's expand the parentheses:

Rightarrow y = x^(2) - 21 x + x^(2) + 2 x + 1y=x221x+x2+2x+1

Rightarrow y = 2 x^(2) - 19 x + 1y=2x219x+1

Then, let's apply the quadratic formula:

Rightarrow x = frac(- (- 19) pm sqrt((- 19)^(2) - 4(2)(1)))(2(2))x=(19)±(19)24(2)(1)2(2)

Rightarrow x = frac(19 pm sqrt(361 - 8))(4)x=19±36184

Rightarrow x = frac(19 pm sqrt(353))(4)x=19±3534

Therefore, the solutions to the equation are x = frac(19 - sqrt(353))(4)x=193534 and x = frac(19 + sqrt(353))(4)x=19+3534.