How do you find the roots, real and imaginary, of y= (x+2)^2-x-5 y=(x+2)2x5 using the quadratic formula?

1 Answer
Jul 18, 2017

See a solution process below:

Explanation:

First, we need to expand the squared term on the right side of the equation using the rule:

#(a + b)^2 = a^2 + 2ab + b^2

Substituting xx for aa and 22 for bb gives:

y = (x + 2)^2 - x - 5y=(x+2)2x5

y = x^2 + (2 xx x xx 2) + 2^2 - x - 5y=x2+(2×x×2)+22x5

y = x^2 + 4x + 4 - x - 5y=x2+4x+4x5

We can now group and combine like terms to put the equation in standard form for a quadratic.

y = x^2 + 4x - x + 4 - 5y=x2+4xx+45

y = x^2 + 4x - 1x + 4 - 5y=x2+4x1x+45

y = x^2 + (4 - 1)x + (4 - 5)y=x2+(41)x+(45)

y = x^2 + 3x + (-1)y=x2+3x+(1)

y = x^2 + 3x - 1y=x2+3x1

The quadratic formula states:

For ax^2 + bx + c = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)x=b±b24ac2a

Substituting 11 for aa; 33 for bb and -11 for cc gives:

x = (-3 +- sqrt(3^2 - (4 * 1 * -1)))/(2 * 1)x=3±32(411)21

x = (-3 +- sqrt(9 - (-4)))/2x=3±9(4)2

x = (-3 +- sqrt(9 + 4))/2x=3±9+42

x = (-3 +- sqrt(13))/2x=3±132

Or

x = -3/2 + sqrt(13)/2x=32+132 and x = -3/2 - sqrt(13)/2x=32132