First, we need to expand the squared term on the right side of the equation using the rule:
#(a + b)^2 = a^2 + 2ab + b^2
Substituting xx for aa and 22 for bb gives:
y = (x + 2)^2 - x - 5y=(x+2)2−x−5
y = x^2 + (2 xx x xx 2) + 2^2 - x - 5y=x2+(2×x×2)+22−x−5
y = x^2 + 4x + 4 - x - 5y=x2+4x+4−x−5
We can now group and combine like terms to put the equation in standard form for a quadratic.
y = x^2 + 4x - x + 4 - 5y=x2+4x−x+4−5
y = x^2 + 4x - 1x + 4 - 5y=x2+4x−1x+4−5
y = x^2 + (4 - 1)x + (4 - 5)y=x2+(4−1)x+(4−5)
y = x^2 + 3x + (-1)y=x2+3x+(−1)
y = x^2 + 3x - 1y=x2+3x−1
The quadratic formula states:
For ax^2 + bx + c = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:
x = (-b +- sqrt(b^2 - 4ac))/(2a)x=−b±√b2−4ac2a
Substituting 11 for aa; 33 for bb and -1−1 for cc gives:
x = (-3 +- sqrt(3^2 - (4 * 1 * -1)))/(2 * 1)x=−3±√32−(4⋅1⋅−1)2⋅1
x = (-3 +- sqrt(9 - (-4)))/2x=−3±√9−(−4)2
x = (-3 +- sqrt(9 + 4))/2x=−3±√9+42
x = (-3 +- sqrt(13))/2x=−3±√132
Or
x = -3/2 + sqrt(13)/2x=−32+√132 and x = -3/2 - sqrt(13)/2x=−32−√132