How do you find the roots, real and imaginary, of y=x^2 + 14x +2(x/2-2)^2 using the quadratic formula?

1 Answer
Feb 17, 2016

-0.382 and -2.618

Explanation:

First distribute the 2 to the binomial.

y=x^2+14x+2(x/2-2)^2

y=x^2+14x+(x-4)^2

Next, square (x-4)^2 using FOIL.

x^2+14x+x^2-8x+16

Combine like terms.

2x^2+6x+16

Divide all terms by 2

x^2+3x+8

Now, using the quadratic formula (-b+-sqrt(b^2-4))/2a where a=1, b=3 and c=8

This gives (-3+-sqrt(3^2-4))/(2*1)

==> (-3+-sqrt(9-4))/2

==> (-3+-sqrt5)/2

This may be a good answer. If not, I'll use decimals...

==> (-3+-2.236)/2

==> (-3+2.236)/2 = -0.382

==> (-3-2.236)/2 = -2.618