How do you find the roots, real and imaginary, of y=x^2 + 11x +28 using the quadratic formula?

1 Answer
Dec 13, 2015

x=-7,-4

Explanation:

Quadratic formula: x=(-b+-sqrt(b^2-4ac))/(2a)

A quadratic equation is in the general form

ax^2+bx+c

So: {(a=1),(b=11),(c=28):}

Plug these into the quadratic formula.

x=(-11+-sqrt(11^2-4(1)(28)))/(2(1))

x=(-11+-sqrt(121-112))/2

x=(-11+-sqrt9)/2

x=(-11+-3)/2

{(x=(-11+3)/2=(-8)/2=color(blue)(-4)),(x=(-11-3)/2=(-14)/2=color(blue)(-7)):}