How do you find the roots, real and imaginary, of y= 8x^2 - 10x + 14-(3x-1)^2 using the quadratic formula?

1 Answer
Mar 29, 2017

x = -2 + sqrt 17, -2 - sqrt17

Explanation:

y = 8 x^2 - 10 x + 14 - (3 x -1)^2

y = 8 x^2 - 10 x + 14 - (9x^2 -6x +1)

y = 8 x^2 - 9 x^2 - 10 x + 6 x + 14 - 1

y = - x^2 - 4 x + 6 x + 13

to find it root when y = 0
0 = - x^2 - 4 x + 6 x + 13
a = -1, b =-4 and c = 13

x = (-b +- sqrt(b^2 -4ac))/(2a)
x = (-(-4) +- sqrt((-4)^2 -4(-1)(13)))/(2(-1))

x = ((4) +- sqrt((16 + 52)))/(-2)

x = (4 +- sqrt(68))/(-2) = (4 +- sqrt(4 * 17))/(-2) = (4 +- 2 sqrt( 17))/(-2

x = -[(2 +- sqrt(17)]

x = -2 + sqrt 17, -2 - sqrt17