How do you find the roots, real and imaginary, of y=-5x^2 +x -4 using the quadratic formula?

1 Answer
Jul 16, 2017

See a solution process below:

Explanation:

The quadratic formula states:

For ax^2 + bx + c = 0, the values of x which are the solutions to the equation are given by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)

Substituting -5 for a; 1 for b and -4 for c gives:

x = (-1 +- sqrt(1^2 - (4 * -5 * -4)))/(2 * -5)

x = (-1 +- sqrt(1 - (80)))/(-10)

x = (-1 +- sqrt(-79))/(-10)

x = (-1 + sqrt(-79))/(-10) and x = (-1 - sqrt(-79))/(-10)