How do you find the roots, real and imaginary, of y= 5x^2 - 13x -4-x(x-1) y=5x213x4x(x1) using the quadratic formula?

2 Answers
May 6, 2018

triangle > 0=>>0"Both the roots are "color(red)"REAL and Different"Both the roots are REAL and Different

Explanation:

Here,

y=f(x)=5x^2-13x-4-x(x-1)y=f(x)=5x213x4x(x1)

f(x)=5x^2-13x-4-x^2+xf(x)=5x213x4x2+x

f(x)=4x^2-12x-4f(x)=4x212x4

We have to represents (4x^2-12x-4)(4x212x4) as a quadratic
equation,before using quadratic formula.

Let, 4x^2-12x-4=04x212x4=0

Comparing with ax^2+bx+c=0,ax2+bx+c=0, we get

a=4,b=-12 and c=-4a=4,b=12andc=4

Now, triangle=b^2-4ac=144-4(4)(-4)=208 > 0=b24ac=1444(4)(4)=208>0

Hence,

triangle > 0=>"Both the roots are "color(red)"REAL and Different"

Note:

(1)triangle > 0=>"Both the roots are "color(red)"REAL and Different"

(2)triangle = 0=>"Both the roots are "color(red)"REAL and Equal"

(3)triangle < 0=>"Both the roots are "color(red)"Imaginary and Different" color(white)(,................................................).""color(blue)"conjugate complex root"

May 6, 2018

Roots are real and x = 3/2 +- sqrt 13/2

Explanation:

y = 5 x^2 -13 x - 4 - x(x-1) or

y = 5 x^2 -13 x - 4 - x^2 +x or

y = 4 x^2 -12 x - 4 or

y = 4( x^2 -3 x - 1) Comparing with standard quadratic

equation ax^2+bx+c=0; a=1 ,b=-3 ,c=-1

Discriminant D= b^2-4 a c = 9+4=13

Discriminant positive, we get two real roots,

Quadratic formula: x= (-b+-sqrtD)/(2a) or

x= (3+-sqrt 13)/2 = 3/2 +- sqrt 13/2

y = 4(x- ( 3/2 + sqrt 13/2))(x- ( 3/2 - sqrt 13/2))

Zeros are x = 3/2 +- sqrt 13/2

[Ans]