How do you find the roots, real and imaginary, of y=(4x-5)(x+1)y=(4x5)(x+1) using the quadratic formula?

1 Answer
May 16, 2018

x_1=5/4x1=54
x_2=-1x2=1

Explanation:

(4x-5)*(x+1)(4x5)(x+1)

=4x^2+4x*1-5*x-5=4x2+4x15x5

=4x^2+4x-5x-5=4x2+4x5x5

=4x^2-x-5==4x2x5=

x_(1,2)=(-(-1)+-sqrt((-1)^2-4(4(-5))))/(2*4)x1,2=(1)±(1)24(4(5))24

x_(1,2)=(1+-sqrt(1+80))/8x1,2=1±1+808

x_(1,2)=(1+-9)/8x1,2=1±98

x_1=5/4x1=54

x_2=-1x2=1