How do you find the roots, real and imaginary, of y=-4x^2 +x -3 using the quadratic formula?

1 Answer
May 3, 2018

x=(1-isqrt47)/8, (1+isqrt47)/8

The roots are imaginary.

Explanation:

y=-4x^2+x-3 is a quadratic equation in standard form:

y=ax^2+x-3,

where:

a=-4, b=1, c=-3

To find the roots, substitute 0 for y.

0=-4x^2+x-3

Quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)

Plug in the known values.

x=(-1+-sqrt(1^2-4*-4*-3))/(2*-4)

Simplify.

x=(-1+-sqrt(-47))/(-8)

x=(-1+-sqrt(47*-1))/(-8)

Simplify sqrt(-1) to i.

x=(-1+-isqrt47)/(-8)

47 is a prime number so it can't be factored.

x=(1+-isqrt47)/8 larr Two negatives make a positive.

Roots

x=(1-isqrt47)/8, (1+isqrt47)/8

graph{y=-4x^2+x-3 [-15.02, 17, -15.25, 0.77]}