How do you find the roots, real and imaginary, of y=4x^2 -7x -(x-2)^2 using the quadratic formula?
1 Answer
Apr 13, 2016
x=(3+ sqrt(57))/6
x=(3- sqrt(57))/6
Explanation:
Given -
y=4x^2-7x-(x-2)^2
Simplify
y=4x^2-7x-(x^2-4x+4)
y=4^2-7x-x^2+4x-4
y=3x^2-3x-4
It is in a quadratic form -
Then If
sqrt((-3)^2-(4 xx 3 xx (-4))
sqrt(9-(-48)
sqrt(9+48)
sqrt(57)
Since
x=(-(-3)+-sqrt(57))/(2 xx 3)
x=(3+ sqrt(57))/6
x=(3- sqrt(57))/6