How do you find the roots, real and imaginary, of y=4x^2 -7x -(x-2)^2 using the quadratic formula?

1 Answer
Apr 13, 2016

x=(3+ sqrt(57))/6
x=(3- sqrt(57))/6

Explanation:

Given -

y=4x^2-7x-(x-2)^2

Simplify

y=4x^2-7x-(x^2-4x+4)
y=4^2-7x-x^2+4x-4
y=3x^2-3x-4

It is in a quadratic form -

Then If sqrt(b^2-(4ac)) is positive, its roots are real otherwise imaginary.

sqrt((-3)^2-(4 xx 3 xx (-4))
sqrt(9-(-48)
sqrt(9+48)
sqrt(57)

Since sqrt(57) is positive, the roots are real

x=(-(-3)+-sqrt(57))/(2 xx 3)

x=(3+ sqrt(57))/6
x=(3- sqrt(57))/6