How do you find the roots, real and imaginary, of y=4x^2 + -7x -(x-2)^2 using the quadratic formula?

1 Answer
Aug 23, 2017

x=(3+sqrt57)/6, (3-sqrt57)/6

Explanation:

Solve:

y=4x^2+(-7x)-(x-2)^2

Expand (x-2)^2.

y=4x^2+(-7x)-(x-2)(x-2)

y=4x^2+(-7x)-(x^2-4x+4)

Simplify.

y=4x^2-7x-x^2+4x-4

Gather like terms.

y=(4x^2+(-x^2))+(-7x+4x)-4

Combine like terms.

y=3x^2-3x-4

To solve for roots, substitute 0 for y. Then solve for x using the quadratic formula.

0=3x^2-3x-4

Quadratic formula

x=(-b+-sqrt(b^2-4ac))/(2a)

Plug in the given values.

x=(-(-3)+-sqrt((-3)^2-4*3*-4))/(2*3)

Simplify.

x=(3+-sqrt(9+48))/6

x=(3+-sqrt57)/12 larr 57 is the product of two prime numbers.

x=(3+sqrt57)/6, (3-sqrt57)/6