How do you find the roots, real and imaginary, of y= (45-x)x using the quadratic formula?

1 Answer
May 7, 2016

x = 0, x = 45

Explanation:

Without using the quadratic formula, simply equate the equation to 0

(45 - x)x = 0

For a product to be 0, either factor should be 0

=> 45 - x = 0
=> x = 45


=> x = 0


If you really need to get the zeroes using the quadratic formula.

x = (-b +- sqrt(b^2 - 4ac))/(2a)


y = (45 - x)x

=> y = -x^2 + 45x + 0

=> a = -1
=> b = 45
=> c = 0


x = (-45 +- sqrt(45^2 - 4(-1)(0)))(2(-1))

=> x = (-45 +- sqrt(45^2 - 0))/-2

=> x = (-45 +- 45)/-2

=> x = (-45 + 45)/-2
=> x = 0/-2 = 0


=> x = (-45 - 45)/-2
=> x = -90/-2
=> x = 45