How do you find the roots, real and imaginary, of y=(3x-4)(x+2)-x^2-x using the quadratic formula?

1 Answer

:. x = (-1 + sqrt33) / 4 ~= 1.186

:. x = (-1 - sqrt33) / 4 ~= -1.686

There are no imaginary roots.

Explanation:

Let's first simplify:

y=(3x-4)(x+2)-x^2-x

y=3x^2+2x-8-x^2-x

y=2x^2+x-8

Quadratic Formula:

x = (-b \pm sqrt(b^2-4ac)) / (2a)

with a=2, b=1, c=-8

x = (-1 \pm sqrt(1^2-4(2)(-8))) / (2(2))

x = (-1 \pm sqrt(1^2+32)) / 4

x = (-1 \pm sqrt33) / 4

:. x = (-1 + sqrt33) / 4 ~= 1.186

:. x = (-1 - sqrt33) / 4 ~= -1.686

There are no imaginary roots.