How do you find the roots, real and imaginary, of y=-3x^2 + -x +2(x-2)^2 using the quadratic formula?

1 Answer

x = (9 + sqrt(113)) / (-2) ~=9.8 and x = (9 - sqrt(113)) / (-2) ~=-0.8

Explanation:

Let's first simplify this so that we can have it in the form of y=ax^2+bx+c:

y=-3x^2+ -x+2(x-2)^2

y=-3x^2 -x+2(x^2-4x+4)

y=-3x^2 -x+2x^2-8x+8

y=-x^2 -9x+8

Now we're ready for the quadratic formula:

x = (-b \pm sqrt(b^2-4ac)) / (2a)

and we have a=-1, b=-9, c=8

x = (9 \pm sqrt((-9)^2-4(-1)(8))) / (2(-1))

x = (9 \pm sqrt(81+32)) / (-2)

x = (9 \pm sqrt(113)) / (-2)

x = (9 + sqrt(113)) / (-2) ~=9.8 and x = (9 - sqrt(113)) / (-2) ~=-0.8