How do you find the roots, real and imaginary, of y= -3x^2 -+5x-2 using the quadratic formula?

1 Answer
Feb 4, 2018

x_1=6/(-6)=-1

x_2=4/(-6)=-2/3

Explanation:

The quadratic formula states that if you have a quadratic in the form ax^2+bx+c=0, the solutions are:
x=(-b+-sqrt(b^2-4ac))/(2a)

In this case, a=-3, b=-5 and c=-2. We can plug this into the quadratic formula to get:
x=(-(-5)+-sqrt((-5)^2-4*-3*-2))/(2*-3)

x=(5+-sqrt(25-24))/(-6)=(5+-1)/(-6)

x_1=6/(-6)=-1

x_2=4/(-6)=-2/3