How do you find the roots, real and imaginary, of y= -3x^2 -2x +(2x+1)^2 using the quadratic formula?

1 Answer
Jul 24, 2018

y=-3x^2-2x+(2x+1)^2 has a double root at x=-1

Explanation:

y=-3x^2-2x+(2x+1)^2
y=-3x^2-2x+(4x^2+4x+1)
y=-3x^2-2x+4x^2+4x+1
y=x^2+2x+1

Using the quadratic formula
x=(-2+-sqrt(4-4(1)(1)))/(2)
x=(-2+-sqrt0)/2
x=(-2)/2
x=-1

Therefore, y=-3x^2-2x+(2x+1)^2 has a double root at x=-1