How do you find the roots, real and imaginary, of y=-3(x -1 )^2-3x-1y=3(x1)23x1 using the quadratic formula?

1 Answer
Apr 7, 2018

The roots are x=1/2+isqrt39/6x=12+i396 and x=1/2-isqrt39/6x=12i396.

Explanation:

First, express yy in standard form.

y=color(red)(-3(x-1)^2)-3x-1=color(red)(-3x^2+6x-3)-3x-1=-3x^2+3x-4y=3(x1)23x1=3x2+6x33x1=3x2+3x4

The quadratic formula finds when y=0y=0. y=0y=0 when

x=(-3+-sqrt(3^2-4(-4)(-3)))/(2*(-3))x=3±324(4)(3)2(3)

=(-3+-sqrt(9-48))/(2*(-3))=(-3+-sqrt(-39))/(2*(-3))=(-3+-isqrt(39))/(2*(-3))=3±9482(3)=3±392(3)=3±i392(3)

=1/2+-isqrt(39)/6=12±i396

Therefore the roots are

x=1/2+isqrt39/6x=12+i396 and x=1/2-isqrt39/6x=12i396.