How do you find the roots, real and imaginary, of y=2x2+7x+(2x1)2 using the quadratic formula?

1 Answer
Jul 2, 2017

x=3+i1512,3i1512

Explanation:

Solve:

y=2x2+7x+(2x1)2

Expand (2x1)2 using the square of a difference: (a2b2)=a22ab+b2, where a=2x and b=1.

(2x1)2=(2x)22(2x)(1)+12

Simplify.

(2x1)2=4x24x+1

Add the result to the rest of the equation.

y=2x2+7x+4x24x+1

Simplify.

y=2x2+4x2+7x4x+1

y=6x2+3x+1

Substitute 0 for y.

0=6x2+3x+1 is a quadratic equation in standard form: a2+bx+c, where a=6, b=3, and c=1.

Use the quadratic formula to solve for the roots (values for x).

x=b±b24ac2a

Substitute the values for a,b,andc into the formula.

x=3±3246126

Simplify.

x=3±92412

x=3±1512

x=3±i1512

Roots:

x=3+i1512,3i1512