How do you find the roots, real and imaginary, of y=-2x^2+6x-(2x-7)^2 using the quadratic formula?

1 Answer
Jan 29, 2018

x=(17+isqrt(-5))/6,(17-isqrt(-5))/6

Explanation:

First, expand the equation.

-2x^2+6x-(4x^2-28x+49)

-2x^2-4x^2+6x+28x-49

-6x^2+34x-49

6x^2-34+49

The quadratic equation is x=(-b+-sqrt(b^2-4ac))/(2a).

Here, a=6,b=-34,c=49

Input:

(-(-34)+-sqrt((-34)^2-4*6*49))/(2*6)

(34+-sqrt(1156-1176))/12

(34+-sqrt(-20))/12

(34+sqrt(-20))/12,(34-sqrt(-20))/12

(34+2isqrt(-5))/12,(34-2isqrt(-5))/12

x=(17+isqrt(-5))/6,(17-isqrt(-5))/6