How do you find the roots, real and imaginary, of y= 2x^2 - 3x + 2 using the quadratic formula?

1 Answer

x_1=(3+sqrt7 i)/4

x_2=(3-sqrt7 i)/4

Explanation:

Using the Quadratic Formula,

x=(-b+-sqrt(b^2-4ac))/(2a)

we have to identify correctly our real number coefficients a, b ,c

set y=0

2x^2-3x+2=0

let a=2 and b=-3 and c=2

x=(-b+-sqrt(b^2-4ac))/(2a)

x=(--3+-sqrt((-3)^2-4(2)(2)))/(2(2))

x_1=(3+sqrt7 i)/4

x_2=(3-sqrt7 i)/4

God bless....I hope the explanation is useful.