How do you find the roots, real and imaginary, of y=-(2x+2)^2+6x^2+3x-12 y=(2x+2)2+6x2+3x12 using the quadratic formula?

1 Answer
Jan 5, 2018

See a solution process below:

Explanation:

First, we need to expand the (2x + 2)^2(2x+2)2 term using this rule for quadratics:

(color(red)(x) + color(blue)(y))^2 = (color(red)(x) + color(blue)(y))(color(red)(x) + color(blue)(y)) = color(red)(x)^2 + 2color(red)(x)color(blue)(y) + color(blue)(y)^2(x+y)2=(x+y)(x+y)=x2+2xy+y2

(color(red)(2x) + color(blue)(2))^2 = (color(red)(2x) + color(blue)(2))(color(red)(2x) + color(blue)(2)) =(2x+2)2=(2x+2)(2x+2)=

(color(red)(2x))^2 + (2 xx color(red)(2x) xx color(blue)(2)) + color(blue)(2)^2 = 4x^2 + 8x + 4(2x)2+(2×2x×2)+22=4x2+8x+4

Substituting and simplifying gives:

y = -(2x + 2)^2 + 6x^2 + 3x - 12y=(2x+2)2+6x2+3x12

y = -(4x^2 + 8x + 4) + 6x^2 + 3x - 12y=(4x2+8x+4)+6x2+3x12

y = -4x^2 - 8x - 4 + 6x^2 + 3x - 12y=4x28x4+6x2+3x12

y = -4x^2 + 6x^2 - 8x + 3x - 4 - 12y=4x2+6x28x+3x412

y = (-4 + 6)x^2 + (-8 + 3)x + (-4 - 12)y=(4+6)x2+(8+3)x+(412)

y = 2x^2 + (-5)x + (-16)y=2x2+(5)x+(16)

y = 2x^2 - 5x - 16y=2x25x16

We can now use the quadratic equation to solve this problem:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0ax2+bx+c=0, the values of xx which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))x=b±b2(4ac)2a

Substituting:

color(red)(2)2 for color(red)(a)a

color(blue)(-5)5 for color(blue)(b)b

color(green)(-16)16 for color(green)(c)c gives:

x = (-color(blue)(-5) +- sqrt(color(blue)(-5)^2 - (4 * color(red)(2) * color(green)(-16))))/(2 * color(red)(2))x=5±52(4216)22

x = (5 +- sqrt(25 - (-128)))/4x=5±25(128)4

x = (5 +- sqrt(25 + 128))/4x=5±25+1284

x = (5 +- sqrt(153))/4x=5±1534

x = (5 +- sqrt(9 xx 17))/4x=5±9×174

x = (5 +- sqrt(9)sqrt(17))/4x=5±9174

x = (5 +- 3sqrt(17))/4x=5±3174