How do you find the roots, real and imaginary, of y= -2x^2 + 15x + 22 using the quadratic formula?

1 Answer
Jan 18, 2016

at y=0 color(white)(.........)x= + 8.756 " or " -1.256

Explanation:

Given: color(white)(...)color(brown)(y=-2x^2+15x+22)

Using standard for of y=ax^2+bx+c=0

Where: color(white)(....)x=(-b+-sqrt(b^2-4ac))/(2a)
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
a=-2
b=15
c=22

Thus: color(white)(.....)x=(-15+-sqrt(15^2-4(-2)(22)))/(2(-2))

x= (-15+-sqrt(225 + 176))/(-4)

x=(-15+-sqrt(401))/(-4)

But 401 is a prime number so unable to break it down further

Using sqrt(401)=20.025 to 3 decimal places

x= + 8.756 " or " -1.256
Tony B