How do you find the roots, real and imaginary, of y= (2x-1)^2+2 (x + 1) (x - 4) using the quadratic formula?

2 Answers
Feb 10, 2018

y = (5+sqrt(79))/6 and (5-sqrt(79))/6

Explanation:

First things first, we need to get this into standard form, ax^2+bx+c

expand

(2x-1)(2x-1)+2(x+1)(x-4)

distribute

4x^2-4x-1 + (2x+2)(x-4)

4x^2-4x-1 + 2x^2-6x-8

combine like-terms

color(orange)(6)x^2 + color(blue)(-10)x + color(pink)(-9)

The quadratic formula is (-b)/(2a) +- ( sqrt( b^2 - 4 xx a xx c ) )/(2a)

with a = color(orange)(6), b = color(blue)(-10), and c = color(pink)(-9)

(-color(blue)(-10))/(2 xx color(orange)(6)) +- ( sqrt( (color(blue)(-10))^2 - 4 xx color(orange)(6) xx color(pink)(-9) ) )/(2 xx color(orange)(6))

simplify

10/12 +- ( sqrt( 100 + 216 ) )/(12)

5/6 +- (2sqrt79)/12

5/6 +- sqrt(79)/6

y = (5+sqrt(79))/6 and (5-sqrt(79))/6

Feb 10, 2018

y= f(x) = (2x-1)^2+2 (x + 1) (x - 4) " " (or)

color(blue)(y=6x^2-10x-7

Roots : color(blue)(x_1 = [5-sqrt(67)]/6, " " x_2 = [5+sqrt(67)]/6 " " (or)

x_1 = -0.53089, or x_2 = 2.19756

Explanation:

Given:

y= f(x) = (2x-1)^2+2 (x + 1) (x - 4) " " Polynomial

color(green)(Step.1

We will expand and simplify

y= f(x) = (2x-1)^2+2 (x + 1) (x - 4)

as shown below:

First, consider color(blue)((2x-1)^2

Using the algebraic identify,

color(brown)((a-b)^2 -= a^2 - 2ab - b^2,

we can expand as shown:

rArr (2x)^2 - 2(2x)*(1) + (1)^2

rArr 4x^2-4x+1 " " Expression.1

color(green)(Step.2

Next, consider

color(blue)(2 (x + 1) (x - 4)

We can factor them out to obtain

rArr 2*(x^2 - 4x+x-4)

rArr 2*(x^2 - 3x-4)

rArr 2x^2 - 6x - 8 " " Expression.2

color(green)(Step.3

We will add our Expression.1 and Expression.2 to get y

(4x^2-4x+1)+(2x^2 - 6x - 8)

rArr 4x^2-4x+1+2x^2-6x-8

rArr 6x^2-10x-7

Now, we are in a position to re-write our Polynomial as

color(blue)(y=f(x)=6x^2-10x-7

color(blue)(6x^2-10x-7=0 is our Quadratic Equation,

and we proceed to find the roots.

color(green)(Step.4

Now that we have a Quadratic Equation in the Standard Form

ax^2 + bx + c = 0, where

a = 6; b = (-10) and c = (-7)

We now use the Quadratic Formula to find the roots

color(red)(Root_1,_2 = -b+- sqrt(b^2-4*a*c)/(2.a)

rArr [-(-10)+-sqrt((-10)^2-4(6)(-7))]/(2(6)

rArr [10+-sqrt(100-4(-42)]]/12

rArr [10+-sqrt(100+168]]/12

rArr [10+-sqrt(268]]/12

rArr 10/12+-sqrt(268)/12

rArr 10/12+-sqrt(4*67)/12

rArr 10/12+-sqrt(4)/12*sqrt(67)/12

rArr 5/6+-2/12*sqrt(67)/12

rArr 5/6+-(2sqrt(67))/12

rArr 5/6+-(cancel 2sqrt(67))/(cancel 12( color(red)(6))

rArr 5/6 +-sqrt(67)/6

rArr (5+-sqrt(67))/6

Hence, we can write our roots as

color(blue)(Root_1 = [5-sqrt(67)]/6, " " Root_2 = [5+sqrt(67)]/6 " " (or)

Root_1 = -0.53089, or Root_2 = 2.19756

Please observe that these are our required real roots, as the discriminant color(blue)((b^2-4*a*c)>0

color(green)(Step.5

We will verify our solutions using GeoGebra graphing software

enter image source here