How do you find the roots, real and imaginary, of y= 2(x+1)^2-(x-4)^2 y=2(x+1)2(x4)2 using the quadratic formula?

1 Answer
Sep 4, 2017

x = -6 + 5sqrt(2) " or " x = -6 - 5sqrt(2)x=6+52 or x=652

Explanation:

Need to expand out the brackets:

y = 2(x^2 + 2x + 1) - (x^2 - 8x + 16)y=2(x2+2x+1)(x28x+16)

y = x^2+12x - 14y=x2+12x14

The roots of a quadratic of the form

ax^2 + bx + c ax2+bx+c

given by

x = (-b +- sqrt(b^2 - 4ac))/(2a)x=b±b24ac2a\

In this case a = 1, b = 12, c = -14a=1,b=12,c=14

x = (-12 +- sqrt(144 -4(1)(-14)))/2 = (-12+-sqrt(144+56))/2 x=12±1444(1)(14)2=12±144+562

x = (-12+-sqrt(200))/2x=12±2002

x = (-12 +- sqrt(100)sqrt(2))/2 = (-12+-10sqrt(2))/2x=12±10022=12±1022

therefore x = -6 + 5sqrt(2) " or " x = -6 - 5sqrt(2)