How do you find the roots, real and imaginary, of y=-2(x+1)^2-(x-3)^2-10 using the quadratic formula?

1 Answer
Jun 9, 2018

color(blue)(x = (1 - isqrt62)/3, (1 + i sqrt62) / 3

Explanation:

y = -2(x+1)^2 - (x-3)^2 - 10

y = -2x^2 - 4x - 2 -x^2 + 6x - 9 - 10

y = -3x^2 + 2x - 21

a = -3, b = 2, c = =-21

x = (-b +- sqrt(b^2 - 4ac)) / (2a)

x = (-2 +- sqrt(4 - 252)) / - 6

color(blue)(x = (1 - isqrt62)/3, (1 + i sqrt62) / 3