How do you find the roots, real and imaginary, of y=-15^2 +40x -34 using the quadratic formula?

How do you find the roots, real and imaginary, of y=-15x^2 +40x -34 using the quadratic formula?

1 Answer

Quadratic Formula is x=(-b+-sqrt(b^2-4ac))/(2a)

Explanation:

Where:
a=-15
b=40
c=-34

:.x=(-b+-sqrt(b^2-4ac))/(2a)
x=(-(40)+-sqrt((40)^2-4(-15)(-34)))/(2(-15))
x=(-40+-sqrt(-440))/(-30)

And because one cannot square root any negative integers,
the answer obtained for y=-15x^2+40x-34 would remain as:
x=(-40+-sqrt(-440))/(-30)

By presenting the roots:
x=(-40+sqrt(-440))/(-30) and x=(-40-sqrt(-440))/(-30)