How do you find the roots, real and imaginary, of y=-15^2 + 12x +34 using the quadratic formula?

1 Answer
Jul 19, 2017

See a solution process below:

(Assuming the problem is: y = -15x^2 + 12x + 34)

Explanation:

The quadratic formula states:

For y = ax^2 + bx + c = 0, the values of x which are the roots to the equation are found by:

x = (-b +- sqrt(b^2 - 4ac))/(2a)

Substituting -15 for a; 12 for b and 34 for c gives:

x = (-12 +- sqrt(12^2 - (4 * -15 * 34)))/(2 * -15)

x = (-12 +- sqrt(144 - (-2040)))/(-30)

x = (-12 +- sqrt(144 + 2040))/(-30)

x = (-12 +- sqrt(2184))/(-30)

x = (-12)/(-30) +- (sqrt(2184))/(-30)

x = 2/5 +- (sqrt(2184))/(-30)

x = 2/5 +- (sqrt(2184))/(-30)

x = 2/5 +- (sqrt(4 * 546))/(-30)

x = 2/5 +- (sqrt(4)sqrt(546))/(-30)

x = 2/5 +- (2sqrt(546))/(-30)

x = 2/5 +- (sqrt(546))/(-15)

x = 2/5 - (sqrt(546))/(15) and x = 2/5 + (sqrt(546))/(15)