How do you find the roots, real and imaginary, of y=12x^2 -7x +28-(x-2)^2 using the quadratic formula?

1 Answer
Apr 13, 2018

x=3/22+-sqrt1047/22i

Explanation:

The quadratic formula states that, for a quadratic in the form

y=color(red)(a)x^2+color(green)(b)x+color(blue)(c) => x=(-color(green)(b)+-sqrt(color(green)(b)^2-4color(red)(a)color(blue)(c)))/(2color(red)(a))

We need to put our given quadratic in the form y=color(red)(a)x^2+color(green)(b)x+color(blue)(c)

y=12x^2-7x+28-(x-2)^2

=12x^2-7x+28-(x^2-4x+4)

=color(red)(11)x^2color(green)(-3)x+color(blue)(24)

From the quadratic formula:

x=(-color(green)((-3))+-sqrt(color(green)((-3))^2-4xxcolor(red)(11)xxcolor(blue)(24)))/(2xxcolor(red)(11))

=(3+-sqrt(-1047))/22

We can separate sqrt(-1047) into sqrt1047xxsqrt(-1). Since i=sqrt(-1):

x=(3+-sqrt1047 i)/22

x=3/22+-sqrt1047/22i