The quadratic formula states:
For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:
x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))
Substituting:
color(red)(-12) for color(red)(a)
color(blue)(-2) for color(blue)(b)
color(green)(-12) for color(green)(c) gives:
x = (-color(blue)(-2) +- sqrt(color(blue)((-2))^2 - (4 * color(red)(-12) * color(green)(-12))))/(2 * color(red)(-12))
x = (color(blue)(2) +- sqrt(color(blue)(4 - 576)))/-24
x = -(2 +- sqrt(-572))/24
x = -(2 +- sqrt(4 * -143))/24
x = -(2 +- sqrt(4)sqrt(-143))/24
x = -(2 +- 2sqrt(-143))/24
x = -(1 +- 1sqrt(-143))/12
x = -(1 +- sqrt(-143))/12