How do you find the roots, real and imaginary, of y=-12x^2-2x -12 using the quadratic formula?

1 Answer
Dec 8, 2017

See a solution process below:

Explanation:

The quadratic formula states:

For color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0, the values of x which are the solutions to the equation are given by:

x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))

Substituting:

color(red)(-12) for color(red)(a)

color(blue)(-2) for color(blue)(b)

color(green)(-12) for color(green)(c) gives:

x = (-color(blue)(-2) +- sqrt(color(blue)((-2))^2 - (4 * color(red)(-12) * color(green)(-12))))/(2 * color(red)(-12))

x = (color(blue)(2) +- sqrt(color(blue)(4 - 576)))/-24

x = -(2 +- sqrt(-572))/24

x = -(2 +- sqrt(4 * -143))/24

x = -(2 +- sqrt(4)sqrt(-143))/24

x = -(2 +- 2sqrt(-143))/24

x = -(1 +- 1sqrt(-143))/12

x = -(1 +- sqrt(-143))/12