How do you find the roots, real and imaginary, of h=--t^2+16t -4 using the quadratic formula?

1 Answer
Jun 5, 2017

color(blue)(h=-8+2sqrt17 or h=-8-2sqrt17

Explanation:

h=- -t^2+16t-4

h=-(-t^2)+16t-4

h=t^2+16t-4

x=(-b+-sqrt(b^2-4ac))/(2a)

color(blue)(a^2+bx+c

color(blue)(a=1,b=16,c=-4

h=(-(16)+-sqrt((16)^2-4(1)(-4)))/(2(1))

(-16+-sqrt(256+16))/2

(-16+-sqrt(272))/2

(-16+-sqrt(2*2*2*2*17))/2

color(blue)(sqrt2 xx sqrt2=2

(-16+-4sqrt17)/2

(cancel4^color(blue)2(-4+sqrt17))/cancelcolor(blue)2^color(blue)1 or (cancel4^color(blue)2(-4-sqrt17))/cancel2^color(blue)1

2(-4+sqrt17) or 2(-4-sqrt17))

color(blue)(-8+2sqrt17 or -8-2sqrt17