How do you find the roots, real and imaginary, of h=-16t^2+6t -4 using the quadratic formula?

2 Answers
Jul 19, 2018

2 complex roots:
x= (3+-isqrt(55))/(16)

Explanation:

x=(-B+-sqrt(B^2-4AC))/(2A

x= (-6+-sqrt(6^2-4(-16)(-4)))/(2(-16))

x= (-6+-sqrt(36-256))/(-32)

x= (-6+-sqrt(-220))/(-32)

x= (-6+-2isqrt(55))/(-32)

No real roots

2 complex roots
x= (3+-isqrt(55))/(16)

Jul 19, 2018

2 imaginary roots: t = 3/16 +- (sqrt(55))/16 i

Explanation:

Given: h = -16t^2 + 6t - 4

The quadratic formula can be used when the equation is in the form: At^2 + Bt + C = 0

t = (-B +- sqrt(B^2 - 4AC))/(2A)

t = (-6 +- sqrt(36 - 4(-16)(-4)))/(2(-16)) = -6/-32 +- sqrt(-220)/-32

t = 3/16 +- (sqrt(4)sqrt(55)sqrt(-1))/-32

t = 3/16 +- (2sqrt(55)i)/-32

t = 3/16 +- (sqrt(55))/-16 i

t = 3/16 +- (sqrt(55))/16 i