How do you find the roots, real and imaginary, of h=-16t^2+64t using the quadratic formula?

1 Answer
Apr 1, 2018

0, 4

Explanation:

The quadratic formula states
x=(-b±√b^2-4ac)/(2a)

In this case,
a=-16
b=64
c=0

Plug in the numbers.

To make it simpler, let's only substitute a first.

x=(-b±√b^2-(-64c))/-32

Substitute b.

x=(-64±√64^2+64c)/-32

Finally, substitute c.

x=(-64±√64^2)/-32

Simplify to get
x=(-64±64)/-32

If x=(-64+64)/-32, then x=0 because 0/-32 = 0.

If x=(-64-64)/-32, then x=4 because -128/-32=4.

The roots of h=-16t^2+64t are 0, 4.

Yay!