How do you find the roots of x^3-6x^2+13x-10=0x36x2+13x10=0?

1 Answer
Sep 15, 2016

x=2x=2

Explanation:

x^3-6x^2+13x-10=0x36x2+13x10=0

x^3-3(x)^2(2)+3(2)^2x+x-2^3-2=0x33(x)2(2)+3(2)2x+x232=0

(x^3-3(x)^2(2)+3x(2)^2-2^3)+x-2=0(x33(x)2(2)+3x(2)223)+x2=0

We can factorize using the polynomial identity that follows:
(a-b)^3= a^3-3a^2b+3ab^2+b^3(ab)3=a33a2b+3ab2+b3

where in our case a=xa=x and b=2b=2

So,
(x-2)^3+(x-2)=0(x2)3+(x2)=0 taking x-2x2 as common factor
(x-2)((x-2)^2+1)=0(x2)((x2)2+1)=0
(x-2)(x^2-4x+4+1)=0(x2)(x24x+4+1)=0
(x-2)(x^2-4x+5)=0(x2)(x24x+5)=0

x-2=0x2=0 then x=2x=2
Or
x^2-4x+5=0x24x+5=0
delta=(-4)^2-4(1)(5)=16-20=-4<0δ=(4)24(1)(5)=1620=4<0
delta <0rArrδ<0 no root in R