How do you find the roots of x36x2+13x10=0?

1 Answer
Sep 15, 2016

x=2

Explanation:

x36x2+13x10=0

x33(x)2(2)+3(2)2x+x232=0

(x33(x)2(2)+3x(2)223)+x2=0

We can factorize using the polynomial identity that follows:
(ab)3=a33a2b+3ab2+b3

where in our case a=x and b=2

So,
(x2)3+(x2)=0 taking x2 as common factor
(x2)((x2)2+1)=0
(x2)(x24x+4+1)=0
(x2)(x24x+5)=0

x2=0 then x=2
Or
x24x+5=0
δ=(4)24(1)(5)=1620=4<0
δ<0 no root in R